.

Sunday, January 27, 2019

Tddc17 – Lab 2 Search

TDDC17 -? Lab 3 routine 2 Q5 P (Melt bundle) = 0,02578 P(Meltdown Ica hold) = 0. 03472 b) Suppose that both warning sensors indicate failure. What is the endangerment of a meltdown in that case? Compargon this result with the insecurity of a melt-? down when there is an actual pump failure and pee leak. What is the difference? The answers must be expressed as conditional probabilities of the observe variable stars, P(Meltdown ). P(Meltdown PumpFailureWarning, WaterLeakWarning) = 0,14535 P (Meltdown PumpFailure, WaterLeak) = 0,2 c) The conditional robabilities for the stochastic variables are often estimated by retell experiments or observations. Why is it sometimes very difficult to get musical themel numbers for these? What conditional probabilites in the model of the plant do you intend are difficult or im come-at-able to estimate? a) What is the risk of melt-? down in the power plant during a solar day if no observations halt been made? What if there is icy weather? It is hard to fully attend all possible detailors that feces effect or trigger an number and how they interact with each other.Observations are always a description of the former(prenominal) and is not always accurate in forecasting the future. E. g. Icy weather is not a thing you skunk measure and span all over a wide range of weather conditions including combinations of precipitation, wind and temperature. d) Assume that the IcyWeather variable is changed to a more(prenominal) accurate Temperature variable instead (dont change your model). What are the different alternatives for the domain of this variable? What will run with the robability distribution of P(WaterLeak Temperature) in each alternative? The domain decreases in size of possible landed e tells as for pattern precipitation and wind is no longer a break out of the estimations. The temperature will be represented as an absolute number or breakups, instead of just original or false. Resulting in a masses more defining of the probabilities of the child thickenings with aspect to each value/interval of temperature. Q6 a) What does a probability table in a Bayesian profits represent?The probability table shows the probability for all states of the node wedded the states of the parent nodes. b) What is a go probability distribution? Using the range rule on the structure of the Bayesian network to rewrite the joint distribution as a product of P(childparent) expressions, calculate manually the special(prenominal) entry in the joint distribution of P(Meltdown=F, PumpFailureWarning=F, PumpFailure=F, WaterLeakWaring=F, WaterLeak=F, IcyWeather=F). Is this a common state for the nuclear plant to be in? Kedjeregeln ger foljanadeP(alla ar falska) = P(ICYWEATHER) * P(PUMPFAILURE) * P(PW PUMPFAILURE) * P(MELTDOWN PUMPFAILURE, WL) * P(WL ICYWEATHER) * P(WATERLEAKW WL) = 0,95 * 0,9 * 0,95 * 1 * 0,9 * 0,95 = 0,69 Ja, detta ar ett vanligt tillstand. c) What is the probability of a meltdown i f you know that there is both a water leak and a pump failure? Would knowing the state of any other variable matter? Explain your reasoning P(Meltdown PumpFailure, WaterLeak ) = 0,8. No other variables matter. When all the parents values are observed they al unity match the child value. ) Calculate manually the probability of a meltdown when you happen to know that PumpFailureWarning=F, WaterLeak=F, WaterLeakWarning=F and IcyWeather=F but you are not truly sure about a pump failure. P(Meltdown = T PUMPFAILURE osaker, resten falska )= P(ICYWEATHER) * P(WL ICYWEATHER) * P(WATERLEAKW WATERLEAK)* P(PUMPFAILURE=T) * P(PW PUMPFAILURE=T) * P(MELTDOWN=T PUMPFAILURE=T,WL) + P(PUMPFAILURE=F) * P(PW PUMPFAILURE=F) * P(MELTDOWN=T PUMPFAILURE=F,WL) = 0,95 * 0,9 * 0,95 * (0,1 * 0,1 * 0,16 + 0,9 * 0,95 * 0,01) = 0,008 (1)P(MELTDOWN=F PUMPFAILURE osaker, resten falska)=P(ICYWEATHER) * P(WL ICYWEATHER) * P(WATERLEAKW WL)* P(PUMPFAILURE=T) * P(PW PUMPFAILURE=T) * P(MELTDOWN=F PUMPFAILU RE=T,WL) + P(PUMPFAILURE=F) * P(PW PUMPFAILURE=F) * P(MELTDOWN=F PUMPFAILURE=F,WL) = 0,95 * 0,9 * 0,95 * (0,1 * 0,1 * 0,84 + 0,9 * 0,95 * 0,99) =0,694 (2) (1) och (2) = alfa = 1 / (0,008 + 0,69) = 1,42 0,008 * 1,42 = 0,012 0,694 * 1,42 = 0,988 Part 3 During the eat break, the possessor tries to show off for his employees by demonstrating the many features of his car stereo. To everyones disappointment, it doesnt work. How did the owners expectations of urviving the day change after this observation? Without knowing whether the radio is working or not, the probability of him surviving is 0,99001. If the radio is not working the probability is 0,98116. How does the cycles/second change the owners chances of survival? With the bicycle the probability of surviving is 0. 99505. Small increase. It is possible to model any function in propositional logic with Bayesian Networks. What does this fact say about the complexity of exact inference in Bayesian Networks? What alternatives are there to exact inference? Yes but it might be complex and you might sometimes have to add new nodes.For example if you want to model an OR-relationship you have to add a new node with truthtable probabilities that match. An alternative to exat inference is probabilistic indifference. Things might not always be trustworthy or false with a predefined probability. With probabilistic inference yuou can reuse a full joint distribution as the noesis base Part 4 Changes in graph Mr. H-S sleeping ( T = 0. 3, F = 0. 7) Mr HS reacts in a competent way WaterleakWarn. Pumpfailurewarning Mr HS sleeping T T T T F F F F T T F F T T F F T F T F T F T F T 0. 0 0. 8 0. 0 0. 7 0. 0 0. 7 0. 0 0. 0 P(Survives Meltdown, Mr HS reacts) incresing 9% (0. 9) The owner had an idea that instead of employing a safety somebody, to replace the pump with a collapse one. Is it possible, in your model, to compensate for the lack of Mr H. S. s expertise with a relegate pump? Yes, by increasing the probability of the pump not failing with 0. 05. The chance of survival increases to 0. 99713 Mr H. S. fell asleep on one of the plants couches. When he wakes up he hears someone scream There is one or more warning signals beeping in your control room . Mr H. S. realizes that he does not have time to fix the error before it is to late (we can assume that he wasnt in the control room at ll). What is the chance of survival for Mr H. S. if he has a car with the same properties as the owner? (notice that this question involves a disjunction which can not be answered by querying the network as is) ClarificationMaybe something could be added to or modify in the network. By adding a new node called warning, which represents the OR-relationship of WaterLeakWarning and PumpFailureWarning, i. e. Warning is unbowed if WaterLeakWarning is true or if PumpFailureWarning is true or if They are both true and is false if they are both false. P(survives) = 0. 98897 if Warning is observed true. What unrealistic as sumptions o you make when creating a Bayesian Network model of a person? That a persons actions are predictable and that he never gains more throw as time passes, which would effect the probabilities of his actions. Describe how you would model a more dynamic world where for example the IcyWeather is more likely to be true the next day if it was true the day before. You only have to estimate a limited sequence of days. By adding nodes representing the weather of the previous days. E. g. one node representing the day before, one bubble representing the day before that and so on Tommy Oldeback, tomol475 Emma Ljungberg, emmlj959

No comments:

Post a Comment